skip to main content


Search for: All records

Creators/Authors contains: "Artigas, Pablo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available February 1, 2025
  2. Free, publicly-accessible full text available February 1, 2025
  3. Na+,K+-ATPase actively extrudes three cytoplasmic Na+ ions in exchange for two extracellular K+ ions for each ATP hydrolyzed. The atomic structure with bound Na+ identifies three Na+ sites, named I, II, and III. It has been proposed that site III is the first to be occupied and site II last, when Na+ binds from the cytoplasmic side. It is usually assumed that the occupation of all three Na+ sites is obligatory for the activation of phosphoryl transfer from ATP. To obtain more insight into the individual roles of the ion-binding sites, we have analyzed a series of seven mutants with substitution of the critical ion-binding residue Ser777, which is a shared ligand between Na+ sites I and III. Surprisingly, mutants with large and bulky substituents expected to prevent or profoundly disturb Na+ access to sites I and III retain the ability to form a phosphoenzyme from ATP, even with increased apparent Na+ affinity. This indicates that Na+ binding solely at site II is sufficient to promote phosphorylation. These mutations appear to lock the membrane sector into an E1-like configuration, allowing Na+ but not K+ to bind at site II, while the cytoplasmic sector undergoes conformational changes uncoupled from the membrane sector.

     
    more » « less
    Free, publicly-accessible full text available January 1, 2025
  4. Brine shrimp (Artemia) are the only animals to thrive at sodium concentrations above 4 M. Salt excretion is powered by the Na+,K+-ATPase (NKA), a heterodimeric (αβ) pump that usually exports 3Na+in exchange for 2 K+per hydrolyzed ATP.Artemiaexpress several NKA catalytic α-subunit subtypes. High-salinity adaptation increases abundance of α2KK, an isoform that contains two lysines (Lys308 and Lys758 in transmembrane segments TM4 and TM5, respectively) at positions where canonical NKAs have asparagines (Xenopusα1’s Asn333 and Asn785). Using de novo transcriptome assembly and qPCR, we found thatArtemiaexpress two salinity-independent canonical α subunits (α1NNand α3NN), as well as two β variants, in addition to the salinity-controlled α2KK. These β subunits permitted heterologous expression of the α2KKpump and determination of its CryoEM structure in a closed, ion-free conformation, showing Lys758 residing within the ion-binding cavity. We used electrophysiology to characterize the function of α2KKpumps and compared it to that ofXenopusα1 (and its α2KK-mimicking single- and double-lysine substitutions). The double substitution N333K/N785K confers α2KK-like characteristics toXenopusα1, and mutant cycle analysis reveals energetic coupling between these two residues, illustrating how α2KK’s Lys308 helps to maintain high affinity for external K+when Lys758 occupies an ion-binding site. By measuring uptake under voltage clamp of the K+-congener86Rb+, we prove that double-lysine-substituted pumps transport 2Na+and 1 K+per catalytic cycle. Our results show how the two lysines contribute to generate a pump with reduced stoichiometry allowingArtemiato maintain steeper Na+gradients in hypersaline environments.

     
    more » « less
    Free, publicly-accessible full text available December 26, 2024
  5. Abstract Ion-transport mechanisms evolve by changing ion-selectivity, such as switching from Na + to H + selectivity in secondary-active transporters or P-type-ATPases. Here we study primary-active transport via P-type ATPases using functional and structural analyses to demonstrate that four simultaneous residue substitutions transform the non-gastric H + /K + pump, a strict H + -dependent electroneutral P-type ATPase, into a bona fide Na + -dependent electrogenic Na + /K + pump. Conversion of a H + -dependent primary-active transporter into a Na + -dependent one provides a prototype for similar studies of ion-transport proteins. Moreover, we solve the structures of the wild-type non-gastric H + /K + pump, a suitable drug target to treat cystic fibrosis, and of its Na + /K + pump-mimicking mutant in two major conformations, providing insight on how Na + binding drives a concerted mechanism leading to Na + /K + pump phosphorylation. 
    more » « less
  6. Abstract Background

    Charcot–Marie–Tooth disease (CMT) is a genetically and clinically heterogeneous group of inherited neuropathies. Monoallelic pathogenic variants inATP1A1were associated with axonal and intermediate CMT.ATP1A1encodes for the catalytic α1 subunit of the Na+/ K+ATPase. Besides neuropathy, other associated phenotypes are spastic paraplegia, intellectual disability, and renal hypomagnesemia. We hereby report the first demyelinating CMT case due to a novelATP1A1variant.

    Methods

    Whole-exome sequencing on the patient’s genomic DNA and Sanger sequencing to validate and confirm the segregation of the identified p.P600RATP1A1variation were performed. To evaluate functional effects, blood-derived mRNA and protein levels ofATP1A1and the auxiliary β1 subunit encoded byATP1B1were investigated. The ouabain-survival assay was performed in transfected HEK cells to assess cell viability, and two-electrode voltage clamp studies were performed in Xenopus oocytes.

    Results

    The variant was absent in the local and global control datasets, falls within a highly conserved protein position, and is in a missense-constrained region. The expression levels of ATP1A1 and ATP1B1 were significantly reduced in the patient compared to healthy controls. Electrophysiology indicated thatATP1A1p.P600Rinjected Xenopus oocytes have reduced Na+/ K+ATPase function. Moreover, HEK cells transfected with a construct encodingATP1A1p.P600Rharbouring variants that confers ouabain insensitivity displayed a significant decrease in cell viability after ouabain treatment compared to the wild type, further supporting the pathogenicity of this variant.

    Conclusion

    Our results further confirm the causative role ofATP1A1in peripheral neuropathy and broaden the mutational and phenotypic spectrum ofATP1A1-associated CMT.

     
    more » « less
  7. The essential transmembrane Na+ and K+ gradients in animal cells are established by the Na+/K+ pump, a P-type ATPase that exports three Na+ and imports two K+ per ATP hydrolyzed. The mechanism by which the Na+/K+ pump distinguishes between Na+ and K+ at the two membrane sides is poorly understood. Crystal structures identify two sites (sites I and II) that bind Na+ or K+ and a third (site III) specific for Na+. The side chain of a conserved tyrosine at site III of the catalytic α-subunit (Xenopus-α1 Y780) has been proposed to contribute to Na+ binding by cation–π interaction. We substituted Y780 with natural and unnatural amino acids, expressed the mutants in Xenopus oocytes and COS-1 cells, and used electrophysiology and biochemistry to evaluate their function. Substitutions disrupting H-bonds impaired Na+ interaction, while Y780Q strengthened it, likely by H-bond formation. Utilizing the non-sense suppression method previously used to incorporate unnatural derivatives in ion channels, we were able to analyze Na+/K+ pumps with fluorinated tyrosine or phenylalanine derivatives inserted at position 780 to diminish cation–π interaction strength. In line with the results of the analysis of mutants with natural amino acid substitutions, the results with the fluorinated derivatives indicate that Na+–π interaction with the phenol ring at position 780 contributes minimally, if at all, to the binding of Na+. All Y780 substitutions decreased K+ apparent affinity, highlighting that a state-dependent H-bond network is essential for the selectivity switch at sites I and II when the pump changes conformational state.

     
    more » « less
  8. Cellular survival requires the ion gradients built by the Na+/K+pump, an ATPase that alternates between two major conformations (E1 and E2). Here we use state-specific engineered-disulfide cross-linking to demonstrate that transmembrane segment 2 (M2) of the pump’s α-subunit moves in directions that are inconsistent with distances observed in existing crystal structures of the Na+/K+pump in E1 and E2. We characterize this movement with voltage-clamp fluorometry in single-cysteine mutants. Most mutants in the M1–M2 loop produced state-dependent fluorescence changes upon labeling with tetramethylrhodamine-6-maleimide (TMRM), which were due to quenching by multiple endogenous tryptophans. To avoid complications arising from multiple potential quenchers, we analyzed quenching of TMRM conjugated to R977C (in the static M9–M10 loop) by tryptophans introduced, one at a time, in M1–M2. This approach showed that tryptophans introduced in M2 quench TMRM only in E2, with D126W and L130W on the same helix producing the largest fluorescence changes. These observations indicate that M2 moves outward as Na+is deoccluded from the E1 conformation, a mechanism consistent with cross-linking results and with proposals for other P-type 2 ATPases.

     
    more » « less